bc100_fgr.py
· 1.5 KiB · Python
Raw
import pandas as pd
import re
from datetime import datetime, date, timedelta
BC_START_DATE = date(2025, 3, 6)
FGR_AVERAGE_PROCESSING_TIME = timedelta(days=5)
PRICE = 2988.00
FILENAME = "Transaktionen.csv"
TODAY = date.today() - FGR_AVERAGE_PROCESSING_TIME
BC_END_DATE = BC_START_DATE + timedelta(days=365)
def parse_journey_date(value):
match = re.search(r"Bahnreise am (\d{1,2}\.\d{1,2}\.\d{4})", str(value))
if match:
return datetime.strptime(match.groups()[0], "%d.%m.%Y").date()
df = pd.read_csv(
FILENAME,
converters={
"Betrag": lambda x: float(x.replace(",", ".")),
"Buchungsdatum": lambda x: datetime.strptime(x, "%d.%m.%Y").date()
}
)
df["Reisedatum"] = df["Verwendungszweck"].map(parse_journey_date)
df = df[
(df["Zahlungsempfänger"] == "Deutsche Bahn") &
(df["Verwendungszweck"].str.contains("Fahrgastrechtsfall", case=False)) &
(df["Betrag"] == 10) &
(df["Buchungsdatum"] > BC_START_DATE) &
(df["Reisedatum"] >= BC_START_DATE)
]
current_amount = df["Betrag"].sum()
bc_use_percentage= ((TODAY - BC_START_DATE).days / 365)
max_amount = bc_use_percentage * PRICE * 0.25
effective_price = PRICE - (current_amount * (1 / bc_use_percentage))
print("Fahrgastrechte: {:.2f}€ von {:.2f}€ ({:.0f}%)".format(
current_amount,
max_amount,
(current_amount / max_amount) * 100
))
print("Effektiver Preis der BC100 wird statt {:.2f}€ {:.2f}€ sein ({:.0f}% Rabatt)".format(
PRICE,
effective_price,
(1 - (effective_price / PRICE)) * 100
))
1 | import pandas as pd |
2 | import re |
3 | |
4 | from datetime import datetime, date, timedelta |
5 | |
6 | BC_START_DATE = date(2025, 3, 6) |
7 | FGR_AVERAGE_PROCESSING_TIME = timedelta(days=5) |
8 | PRICE = 2988.00 |
9 | FILENAME = "Transaktionen.csv" |
10 | |
11 | TODAY = date.today() - FGR_AVERAGE_PROCESSING_TIME |
12 | BC_END_DATE = BC_START_DATE + timedelta(days=365) |
13 | |
14 | def parse_journey_date(value): |
15 | match = re.search(r"Bahnreise am (\d{1,2}\.\d{1,2}\.\d{4})", str(value)) |
16 | if match: |
17 | return datetime.strptime(match.groups()[0], "%d.%m.%Y").date() |
18 | |
19 | df = pd.read_csv( |
20 | FILENAME, |
21 | converters={ |
22 | "Betrag": lambda x: float(x.replace(",", ".")), |
23 | "Buchungsdatum": lambda x: datetime.strptime(x, "%d.%m.%Y").date() |
24 | } |
25 | ) |
26 | |
27 | df["Reisedatum"] = df["Verwendungszweck"].map(parse_journey_date) |
28 | |
29 | df = df[ |
30 | (df["Zahlungsempfänger"] == "Deutsche Bahn") & |
31 | (df["Verwendungszweck"].str.contains("Fahrgastrechtsfall", case=False)) & |
32 | (df["Betrag"] == 10) & |
33 | (df["Buchungsdatum"] > BC_START_DATE) & |
34 | (df["Reisedatum"] >= BC_START_DATE) |
35 | ] |
36 | |
37 | current_amount = df["Betrag"].sum() |
38 | bc_use_percentage= ((TODAY - BC_START_DATE).days / 365) |
39 | max_amount = bc_use_percentage * PRICE * 0.25 |
40 | |
41 | effective_price = PRICE - (current_amount * (1 / bc_use_percentage)) |
42 | |
43 | print("Fahrgastrechte: {:.2f}€ von {:.2f}€ ({:.0f}%)".format( |
44 | current_amount, |
45 | max_amount, |
46 | (current_amount / max_amount) * 100 |
47 | )) |
48 | |
49 | print("Effektiver Preis der BC100 wird statt {:.2f}€ {:.2f}€ sein ({:.0f}% Rabatt)".format( |
50 | PRICE, |
51 | effective_price, |
52 | (1 - (effective_price / PRICE)) * 100 |
53 | )) |