bc100_fgr.py
· 873 B · Python
Eredeti
import pandas as pd
from datetime import datetime, date, timedelta
BC_START_DATE = date(2025, 3, 6)
PRICE = 2988.00
FILENAME = "Transaktionen.csv"
TODAY = date.today()
BC_END_DATE = BC_START_DATE + timedelta(days=365)
df = pd.read_csv(
FILENAME,
converters={
"Betrag": lambda x: float(x.replace(",", ".")),
"Buchungsdatum": lambda x: datetime.strptime(x, "%d.%m.%Y").date()
}
)
df = df[
(df["Zahlungsempfänger"] == "Deutsche Bahn") &
(df["Verwendungszweck"].str.contains("Fahrgastrechtsfall", case=False)) &
(df["Betrag"] == 10) &
(df["Buchungsdatum"] >= BC_START_DATE)
]
current_amount = df["Betrag"].sum()
max_amount = round(((BC_END_DATE - TODAY).days / 365) * PRICE * 0.25, 2)
print("{:.2f} € von {:.2f} € ({}%)".format(
df["Betrag"].sum(),
max_amount,
round((current_amount / max_amount) * 100)
))
1 | import pandas as pd |
2 | |
3 | from datetime import datetime, date, timedelta |
4 | |
5 | BC_START_DATE = date(2025, 3, 6) |
6 | PRICE = 2988.00 |
7 | FILENAME = "Transaktionen.csv" |
8 | |
9 | TODAY = date.today() |
10 | BC_END_DATE = BC_START_DATE + timedelta(days=365) |
11 | |
12 | df = pd.read_csv( |
13 | FILENAME, |
14 | converters={ |
15 | "Betrag": lambda x: float(x.replace(",", ".")), |
16 | "Buchungsdatum": lambda x: datetime.strptime(x, "%d.%m.%Y").date() |
17 | } |
18 | ) |
19 | |
20 | df = df[ |
21 | (df["Zahlungsempfänger"] == "Deutsche Bahn") & |
22 | (df["Verwendungszweck"].str.contains("Fahrgastrechtsfall", case=False)) & |
23 | (df["Betrag"] == 10) & |
24 | (df["Buchungsdatum"] >= BC_START_DATE) |
25 | ] |
26 | |
27 | current_amount = df["Betrag"].sum() |
28 | max_amount = round(((BC_END_DATE - TODAY).days / 365) * PRICE * 0.25, 2) |
29 | |
30 | print("{:.2f} € von {:.2f} € ({}%)".format( |
31 | df["Betrag"].sum(), |
32 | max_amount, |
33 | round((current_amount / max_amount) * 100) |
34 | )) |
35 |